Growth cones as soft and weak force generators.
نویسندگان
چکیده
Many biochemical processes in the growth cone finally target its biomechanical properties, such as stiffness and force generation, and thus permit and control growth cone movement. Despite the immense progress in our understanding of biochemical processes regulating neuronal growth, growth cone biomechanics remains poorly understood. Here, we combine different experimental approaches to measure the structural and mechanical properties of a growth cone and to simultaneously determine its actin dynamics and traction force generation. Using fundamental physical relations, we exploited these measurements to determine the internal forces generated by the actin cytoskeleton in the lamellipodium. We found that, at timescales longer than the viscoelastic relaxation time of τ = 8.5 ± 0.5 sec, growth cones show liquid-like characteristics, whereas at shorter time scales they behaved elastically with a surprisingly low elastic modulus of E = 106 ± 21 Pa. Considering the growth cone's mechanical properties and retrograde actin flow, we determined the internal stress to be on the order of 30 pN per μm(2). Traction force measurements confirmed these values. Hence, our results indicate that growth cones are particularly soft and weak structures that may be very sensitive to the mechanical properties of their environment.
منابع مشابه
Measurements of growth cone adhesion to culture surfaces by micromanipulation
Neurons were grown on plastic surfaces that were untreated, or treated with polylysine, laminin, or L1 and their growth cones were detached from their culture surface by applying known forces with calibrated glass needles. This detachment force was taken as a measure of the force of adhesion of the growth cone. We find that on all surfaces, lamellipodial growth cones require significantly great...
متن کاملStrength in the periphery: growth cone biomechanics and substrate rigidity response in peripheral and central nervous system neurons.
There is now considerable evidence of the importance of mechanical cues in neuronal development and regeneration. Motivated by the difference in the mechanical properties of the tissue environment between the peripheral (PNS) and central (CNS) nervous systems, we compare substrate-stiffness-dependent outgrowth and traction forces from PNS (dorsal root ganglion (DRG)) and CNS (hippocampal) neuro...
متن کاملGrowth cone behavior and production of traction force
The growth cone must push its substrate rearward via some traction force in order to propel itself forward. To determine which growth cone behaviors produce traction force, we observed chick sensory growth cones under conditions in which force production was accommodated by movement of obstacles in the environment, namely, neurites of other sensory neurons or glass fibers. The movements of thes...
متن کاملمقایسه آلودگی زدایی مخروطهای گوتاپرکا با سه نوع محلول ضدعفونی کننده در مدت زمان یک دقیقه
Background and Aim: Care must be taken during root canal therapy to prevent contamination of filling materials and avoid root canal contamination. Gutta-percha cones are now widely used to fill root canals. However they are not resistant to conventional sterilization processes in moist or dry heat. To keep the aseptic chain, gutta-percha cones require rapid chair side decontamination before use...
متن کاملRetrograde flow rate is increased in growth cones from myosin IIB knockout mice.
Growth cones of myosin-IIB-knockout mice have reduced outgrowth rates and traction force. There is a close relationship between traction force, retrograde flow and forward advance of growth cones. All three activities appear to be at least partially myosin dependent. Therefore, we have now tested for differences in retrograde flow rates between growth cones from myosin-IIB-knockout mice and the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 108 33 شماره
صفحات -
تاریخ انتشار 2011